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Abstrac:t-A theory of continuum dam~e mechanics is developed within the framework of the
principle of virtual power. BecaUlle the damage in a solid results from microscopic movements, we
decided to include the power of these microscopic movements in the power of the internal forces.
The microscopic velocities are rela.$ed to the damaae rate. The power of the internal forces we
choose depends on the da.Jnaae velocity and its gradient to take into account the interactions.
Models issued from this theory are presented. They are coherent from the mechanical and math­
ematical points of view. The n-.neri::al computations show no mesh sensitivity. They describe with
good agreement the IIIIIin eJqlerilDCl1tal properties. Cooc:rete is ch0seJl as an example to illustrate
the theory. A model using two damage quantities is also presented. It yields the correct description
of the unilateral phenomenon observed in concrete. Finally, an extension of the existing models is
proposed to describe the fatiJUC damage behaviour.

I. INTRODUCTION

Damage of materials has been modelled for a long time by damage quantities within the
framework of continuum mechanics. They are internal quantities which appear in the
expression of the free ener,y of the material. The many possible expressions for the free
energy yield numerous and versatile constitutive laws. The constitutive laws are coupled
with the balance law resulting from the principle ofvirtual power to give predictive theories
[see for instance Germain et aJ. (1983) and Lemaitre and Chaboche (1988)].

The principle of virtual power is often thought to be very fixed. Nevertheless, it is
possible to modify it or better adapt it to the problem under consideration. Damage, for
instance damage of concrete, results from microscopic movements. Our basic idea is that
the power of these microscopic movements must be accounted for in a predictive theory.
Thus, we decide to modify the expression of the power of the internal forces. We assume
that this power also depends on the damage rate, which is clearly related to the microscopic
movements. Furthermore, we assume that it also depends on the gradient of the damage
rate to account for microscopic interactions. The consequences of this assumption and a
careful treatment of the fact that the damage quantities are proportions (i.e. quantities with
values between 0 and 1) are given in Section 2. The basic constitutive laws are derived
from that analysis. The main results have been briefly presented in Fremond and Nedjar
(1993a, b).

The models issued from this formulation are free of spurious mesh sensitivity and are
able, when compared to experimental results, to predict correctly the behaviour ofconcrete
structures. Also, accounting for the gradient of damage leads to good predictions of the
structural size effect, which is particulary important in civil engineering.

The paper is organized as follows: the next section is devoted to the formulation of
the damage theory founded on the principle of virtual powers. The constitutive laws
are given following the prillCiples of continuum thermodynamics (Germain et aJ., 1983;
Fremond, 1990). In Sections 3 and 4, damage models are developed within the framework
of the previous theory. The unilateral phenomenont which means the macroscopic res~

toration of stiffness when going from tension to compression, is described by using two
damage quantities.
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In Sections 5 and 6, numerical examples on concrete structures are given where some
possibilities of the models are emphasized: the lack of mesh sensitivity and the structural
size effect. Finally, in Section 7, an extension of an existing model (of Section 3) is proposed
to describe the fatigue damage behaviour.

2. BALANCE LAWS AND CONSTITUTIVE LAWS FOR DAMAGE

We consider a solid, for instance a piece of concrete, and study its damage. Within the
framework of continuum mechanics, we want to describe at the macroscopic level the
effects ofmicrofractures and microcavities which result in a decrease ofthe material stiffness.
Let the scalar /3(x, t) be the macros<:opic damage quantity with value 1 when the material
is undamaged and value 0 when it is completely damaged. There exist classical theories
describing the damage ofmaterials. They are well established from the mechanical point of
view. The finite element approximations of the resulting set of partial differential equations
have an unusual property: the numerical results depend heavily on the finite element mesh.
This property can be thought to be unacceptable or acceptable due to the so~called size
effect. In this paper we describe a predictive theory which is not mesh dependent. It is also
coherent from the m.echanical and mathematical points of view.

The basic idea of the theory is to modify the power of the interior forces (Fremond,
1987). Within the solid, there exist microscopic movements which produce damage. We
think that the power of these microscopic movements must be taken into account in the
power of the internal forces. Thus, we choose the power of the internal forces to depend,
besides on the strain rates D(&1) (u is the macroscopic velocity), also on d/3/dt and
grad d/3/dt. These latter quantities are clearly related to the microscopic movements. The
gradient ofdamage is introduced to take into account the influence of damage at a material
point on the damage of its neighbourhood.

The principle of virtual power gives a new equation which describes the evolution of
the damage quantity /3. It is natural to assume that the free energy 'f' is a function of the
deformations, /3 and grad /3. For the sake of simplicity we assume that there is only
dissipation with respect to dfj/dt. We also assume that the temperature is constant.

2.1. Principle ofvirtual power: equations ofmovement
We choose the power of the internal forces which takes into account the microscopic

movements in a domain n of the solid as :

where (J is the stress tensor. Two new non-elassical quantities appear: B, the internal work
of damage, and H, the flux vector of internal work of damage.

The axiom of the principle of virtual power is satisfied: Pi = 0 for any rigid body
velocity (dfj/dt = 0 in such a movement because the distance of material points remains
constant).

We choose the power of the external forces as:

where f are the volumetric external forces, F the surfacic external forces, A and bare
respectively the volumetric and surface external sources of damage work. A source of
damage work A or b can be produced by chemical (or in some cases electrical) actions
which break the links inside a material, concrete for instance, without macroscopic defor­
mations. One can think, for instance, of the so-called alkali aggregate reaction which
damages concrete.

We choose the power of the acceleration forces as:



Damage, gradient of damage and principle of virtual power 1085

where u is the macroscopic velocity and p the density. The quantity p(d 2P/dt2
) stands for

the acceleration forces of the microscopic links; p is proportionnal to their mass.
For quasi-static evolutions, the principle of virtual power,

'in, 'iv, 'iy, Pj(v, y) +Pe(v, y) =°
(v and yare virtual velocities), gives two sets of movement equations:

diva+f=O, inn; a'o=F, in an;

divH-B+A=O, inn; H'n=b, in an,

(I)

(2)

where 0 is the outwards unit normal vector to n. Equation (2) is new and non-classical.

2.2. Internal constraint on the damage quantity: constitutive laws
The value of the damage quantity fJ is between °and I (fJ is often thought to be the

volumetric proportion of microvoids or the quotient of the modulus of the damaged
material by the modulus of the undamaged material) :

o~fJ~l. (3)

We take the internal constraint (3) on the damage quantity to be a physical property. Being
a physical property of a state quantity, it must be taken into account by the functions which
describe the whole physical properties, i.e. either the free energy 'P or the dissipative forces
which can be defined by a pseudo-potential of dissipation et>. We choose the free energy
because the free energy describes properties related to the state and the dissipative forces
properties related to the velocities. For the sake of simplicity, we make the small per­
turbations assumption and let e be the small deformations. We choose

'P = 'P(e, fJ, grad fJ) = 'P I (e, fJ, grad fJ) + I(fJ) ,

where 'PI is a smooth function and I is the indicator function of the set [0, I] (Moreau,
1966) (/(y) = 0, if °~ y:::; 1 and I(y) = +00, if y~[O, I]). Thus, the free energy has a
physical value for any actual or physical value of fJ. The free energy is equal to + 00 for
any value of fJ which is physically impossible, for instance fJ > I. Due to the expression of
the power of the interior forces, it is natural to assume that the free energy depends on the
gradient of the state quantity fJ. This choice, based on the expression of the power of the
interior forces, has already been made to describe adhesion (Fremond, 1987). The gradient
of internal quantities has also been used in another general setting (Maugin, 1990; Costa
Mattos et al., 1992).

The computation of the derivatives of the free energy in an actual evolution, i.e. in an
evolution such that °:::; fJ(x, t) :::; 1 for any point x and any time t, allows us to define the
reversible or non-dissipative forces related to e, fJ and grad fJ:

o'P I o'P I o'P I
arex,t)=&(x,t), Br(x,t) = ofJ (x,t), H'(x,t) = ogradfJ(x,t). (4)

The internal constraint (3) is taken into account by introducing a reaction nreac which is
defined by assuming that there exists a function Breac(x, t) such that
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(5)

where oJ is the subdifferential or the generalized derivative of the indicatoJ function J
(Moreau, 1966) (ol(II)={O} if O<fl<l, iJJ(O)=R-, O/(l)=R+, O/(fl) =0, if
fl ~ [0, 1]).

Let us ,note that I'elatioQ, (5) implies ,that the subdifferential iJJ(fl) is not empty, and
thus that the internal constraint (3) is satisfied. One can also say that relation.(5) has two
meanings, fint that the internal constraint is satisfied, second that there exists a reaction to
the internal constraint which is zero for 0 < fl < 1, positive for fl = 1 and negative for
fl = O. Let us also note that the sum of the reaction Bre&C and of the reversible force Br

,

(B'"+B') is the ,eneralized derivative of the free energy 'II with respect to fl; Br is the
smooth part and 1Jrew: is the non-smooth part of the derivative. If the indicator function 1
is approximated" by a lIlIlOOthfunctiolt, lite in Brauner et al.'(1986), B reac is approximated
by a classical derivative and there is no more difference between the smooth part Br and
the non-smooth part~. In ourpoiDt of view, the Don-smooth mechanics point of view,
the free enerIY is 'I' and the non-dissipative force associated to fl is Br +Breac E iJ'P.

For the aU of aimplicity we Illume that there is no dissipation with respect to the
small defonnations 8 (i.e. the material is elastic) and with respect to the gradient of the
damap. quantity; ThuS, we assUlllC that there are only dissipative phenomena, viscous
pbeno.meDllfor'.....DC"', for thedamqe quantity fl.

To ....'tbe·cluipative force associiated to fl, we assume that there exists a function

i ( de dfl d grad fl)
B x, t, e, fl, grad fl, dt ' dt ' dt '

such that:

(6)

where § is the set of the 3 x 3 symmetric matrices. We let E = (e, fl, grad fl).
The constitutive laws we choose are:

(7)

where the last constitutive law means that

r rea<: i( de dfl dgrad{3 )B(x, t) == B (x, t) +B (x, t)+ B x, t, E(x, t), dt (x; t), dt (x, t), dt (x, t) .

The equations describing the evolution of a piece of material are (1), (2) and (7),
completed by initial and boundary conditions. Before we investigate them, let us prove that
our choice is coherent from a mechanical point of view. The only thing we have to prove is
that the constitutive laws (7) are such that the Clausius-Duhem inequality is satisfied.
Because we have lISfIumed the temperature to be constant, the Clausius-Duhertl inequality
is:
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(8)

for any actual evolution, i.e. for any actual velocities de/dt, dfJ/dt, d grad fJ/dt such that
condition (3) is satisfied.

Before we go on, let us remark that we have to define carefully the time derivative
dfJ/dt. Because of the inequality (3) the time derivative of fJ is not continuous; thus, we
have to choose between the right derivative,

which depends on the future evolution of the material, and th~ left derivative,

lim fJ( t) - ~;t - L\t) = d~: ' !!l.t --+ O(!!l.t > 0)

which depends on the past evolution of the material.
We know that the constitutive laws are objective relations, i.e. relations which are

computed at time t with the available information given by the history:oCthe material, i.e.
by its past evolution. It results that in t~ constitutive laws the 4erivativeswithtespect to
the time are left derivatives (Fremond, 1990). Thus, we decide that all the time'derivatives
we consider or have considered are left derivatives :

dn din
dt = dt' for any quantity 1£.

Let us prove the following result.
Theorem. Let us assume that the function 'f1(e, fJ, grad fJ) is smooth and that the

relations (4) are satisfied. Then the Clausius-Duhem inequality is satisfied by the consti­
tutive laws (7).

Proof Let us prove the following proposition before we prove the theorem.
Proposition (Fremond, 1990). In any actual evolution, i.e. in any evolution such that

V(x, t), 0 ~ fJ(x, t) ~ I, we have

dfJ
V(x, t), VA E iJI(fJ(x, t)), A dt (x, t) ~ O. (9)

Proofof the proposition. Let !!l.t > 0 be a time increment. Because 0 ~ fJ(x, t) ~ I, the
indicator function I is subdifferentiable at the point fJ(x, t) (Moreau, 1966) and

VA E iJI(fJ(x, t», I(fJ(x, t - !!l.t» ~ I(fJ(x, t» +A(fJ(x, t - L\t) - fJ(x, t»

or because 0 ~ fJ(x, t-!!l.t) ~ I,

VAEOI(fJ(x,t», 0 ~ A(fJ(x,t-!!l.t)-fJ(x,.t».

By dividing this relation by L\t > 0, we get

VA E OI(fJ(x, t», A (fJ(x, t) - ~;x, t - !!l.t» ~ O.

By letting !!l.t tend to 0, we get the relation (9).
Proofof the theorem. Because the function !/J,(e,fJ,gradp) is smooth, we have
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d'P I a'P 1 de a'P I d{J a'P I d grad {J de d{J d grad {J--=-'-+--+ . =(J"-+B'-+H"~--'---
dt ae' dt a{J dt a grad (J dt . dt dt dt'

Due to the proposition we have

o~ B,eac(x t) d{J (x t)
'" , dt ' .

The relation (6) gives

i ( de d{J d grad (J) d{J
o~ B x, t, E, dt' dt ' dt cit·

By adding the last three relations, we get

d'P 1 de . df./ dgrad f.I
-- ~ (J' :- + (B' +B,eac +B')~ +Hr. ---=---,---'-1'

dt '" dt dt dt'

and by using the constitutive laws (7), we get the Clausius-Duhem inequality (8). That
ends the proof of the theorem. •

A very productive and elegant way to define dissipative forces is to assume that there
exists a pseudo-potential of dissipation, as intoduced by Moreau (1970) [see also Germain
et al. (1983)]. A pseudo-potential of dissipation is a positive, convex and sub-differentiable
function of b, ct>(x, t, E, dejdt, b, d grad (Jjdt) with value 0 for b = O.

We define the dissipative force B i satisfying condition (6) by

i ( de d{J d grad (J) ( de d{J d grad (J)
B x, t, E, dt ' dt ' dt E act> x, t, E, dt ' dt ' dt ' (10)

where act>(x, t, E, de/dt, d{Jjdt, d grad (J/dt) is the sub-differential of ct> with respect to b for
b = d{Jjdt.

In the following sections we apply these basic results to practical situations: the damage
of concrete and the damage of some composite materials. The different theories we describe
are defined by different free energies 'P and different pseudo-potentials of dissipation ct>,
and also by choosing one or two damage quantities.

3. A MODEL WITH ONE DAMAGE QUANTITY

It is mainly observed that damage is produced by extensions into the material during
loading when a certain threshold is achieved. Such situations are observed in the exper­
imental tests on materials like concrete (Mazars and Bazant, 1988) and ceramic-eeramic
composites (Ladeveze, 1983; Nedjar, 1993).

To be in agreement with these observations, and in the framework of the formulation
of the damage theory described in Section 2, we are led to choose the free energy and the
pseudo-potential of dissipation as

'PI = ~{J{211 tr [e' e] +A(tr [en 2
} + W(1-{J)-M{log (lfJI)-{J+ I} + ~ (grad {J)2, (11)

(12)

with the notation /3 = d{Jjdt, and where Aand 11 are the Lame parameters. The first term of
'P I is a quadratic function with respect to the strain tensor and a linear function with respect
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to the damage quantity, It constitutes the simplest model where the damage is coupled with
elasticity, The quantity W is the initial damage threshold, expressed here in terms of
volumetric energy. It is equivalent to the initial threshold expressed in terms of damage
force (usually denoted by Yo) conjugated to the damage quantity in the models issued from
the theory of generalized standard materials (Pijaudier-Cabot and Bazant, 1987; Lemaitre
and Chaboche, 1988). The quantity M is the factor of displacement of this threshold, cis
the viscosity parameter of damage and k measures the influence of the damage at a material
point on the damage of its neighbourhood,

The expression of the pseudo-potential of dissipation in eqn (12) is chosen in such a
way that damage results only from extensions, as will be seen in the following.

The function I_in eqn (12) is the indicator fWlCtion ofthe interval] - 00, 0] (I_(y) = 0,
if y ::::; 0 and 1_ (y) = + 00, if y¢J- 00, 0]). The effect of this indicator function is to make
it compulsory for /J to be negative. The notations <.) + and <.) - are respectively the
positive part and the negative part of the scalar quantity (.): (.)+ = Sup{O,(')} and
(.)- = Sup{O, - <.)}. The positive part and the negative part of the strain tensor are
obtained after diagonalization. One has the following useful properties (Ladeveze, 1983) :

e=e+-e- and tr[e+'C] =0,

~otr[~:'e+]=e+, ~o«tr~:1)+)2= <tr[el)+I
d

,

where Id is the identity second order tensor.
With this choice, the constitutive relations (7) are:

(13)

(J = p{2jte+A(tr[e])Id }, H = k grad p,
t3qt o<b

B = _I + _. +Breac

ofJ ofJ '
(14)

where the derivative of qt I and the generalized derivative of <b (Moreau, 1966; Fremond,
1987, 1990) are:

Oqtl I (l-fl)013 =z{2jttr[e'el+A(trt:)2}-W-M -13-

and

with t3L(x) = {O}, if x < 0 and aL(O) = [0, + 00[. One can see that the first equation in
(14) relating the stress and the strain is the simplest relation where coupling of damage with
elastic behaviour occurs.

The equations of evolution are obtained by replacing eqns (11), (12) and (14) in eqns
(1) and (2). We then get:

div (p{2jte+A(tr [e])Id }) +f = 0, in n,
(J • n = F, in on,

(15)

c/J -kAf3 + t3I(fJ) + 01_ (/J) 3-~ {2jt tr [e+ . e+] + A((tr [el)+)2} + W+Me pP). in n,

op
k on = 0, in an, fJ(x, 0) = Po(x), in n, (16a,b)
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Fig. 1. Generalized derivatives of the indicator function Ie of the triangle C.

where Ap is the Laplacian of p. The function Po is the initial value of the damage in n, with
Po(x) = 1 when the structure is initiaUy undamaged.

Equations (16) are the equations ofevolution ofdamage in the domain n. The elements
oI(P) and 0/_ (/J) are sets of reactions which forcep to remain between 0 and 1 and /3 to be
negative. In eqn (16a), the source of damage on the right-hand-side is a strain energy
produced :by extensions,. Tbis agrees with· the e1tPflrimental observations mentioned above.
It is also important to note that this equation shows different behaviours in tension and
compression, due to Poisson's ratio, as already checked in Fremond and Nedjar (1993a)
and Nedjar (1993). The threshold of damage is larger in compression than in tension. This
is again in aareement with experimental tests on concrete structures. This model is sufficient
to describe the damage phenomena during multiaxialloadings (Ioading-unlo~ingwithout
changing the sign of the external actions).

Examples using this model are given in Sections 5 and 6, where we check the lack of
mesh sensitivity of the numerical results given by the finite element discretization and study
the size effect in the structures modelled by this predictive theory of damage.

4. A TWO-DAMAGE-QUANTITIES MODEL AND THE UNILATERAL PHENOMENON:
APPLICATION TO CONCRETE

When damage is produced, microcracks appear in the zones where extensions exist.
When changing the sign of the principal deformations, by changing the sign of the loading,
these microcracks close. At the macroscopic level, the initial stiffness is then recovered: this
is a unilateral phenomenon (Ladeveze, 1983; Chaboche, 1992; Pijaudier-Cabot et al.,
1994). This unilateral phenomenon is not described by the previous model. To take it into
account, this model is completed by introducing two damage quantities instead of a single
one. As in Fremond and Nedjar (1993a, b), they are denoted as PI for the extension and Pc
for the contraction.

The principle of virtual powers discribed in Section 2 is then written with these two
damage quantities. In this case, the internal constraint on the damage quantities (3) is
replaced by

(Pt,Pc)EC = {(X,y),XE[O, 1] ;yE[O, 1],x ~ y}. (17)

This constraint means that (Pt, Pc) remains in the triangle C. Therefore, we have PI ~ Pc.
This means that damage in compression produces damage in tension. However, the reverse
is not true. The internal constraint resuhs in two reactions B~eac and Br;ac which are defined
by

(B~ac(x, t), B~·ac(x, t» EoIc(Pt(x, t), Pc(x, t», (18)

where Ole is the subdifferential or the set of the generalized derivatives of the indicator
function Ie of C (see Fig. 1). We have:
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Br;'ac =°and Br;ac = 0,

Br;'ac e) - 00, 0] and Br;ac = 0,

Br;'ac =°and Br;ac E [0, + 00 [,

Br;'ac = - B'.;ac E [0, + 00 [,

(Br:ac, Br;aC) E {normal cone to Cat (O,O)},

(Br:ac, Br;aC) E {normal cone to Cat (0, I)},

(Br:aC, Br;ac) E {normal cone to C at (1, I)},

if (fJ" Pc) is in the interior of C,

if PI =°and Pc E ]0, 1[,

if PI e ]0, 1[ and Pc = 1,

if PI = Pc and PI E )0, 1[,

for (fJ1' Pc) = (0,0),

for (fJ1> Pc) = (0, 1),

for (fJ1> Pc) = (1, 1).

The free energy and the pseudo-potential of dissipation we choose are

'1'1 = '1'1 (e, p" Pc, grad PI' grad Pc)

=Hpl {2p tr [e+ •e+) + ).«tr [e]) +)2} + Pc{2p tr [e- •e-] + ).«tr [e» -)2}}

+ WI(l-PI)+ Wc(l-Pe)-MI{log IPII-Pl+ I} -Mc{log IPel-Pe+ I}

+ ~ [(grad PI)2 + (gradPc)2), (19)

where L(x,y) is the indicator function of the set) - 00,0] x] - 00,0].
The definitions of the cbaracteriatics of the material are identical to those in the model

described in Section 3. They are sublcriptcd by t for the extension and c for the contraction.
In the expression of '1'1' it appears that the contributions of the positive and negative parts
of the strain are different. The quadratic function involving the extensions e+ is coupled
with the damage quantity PI and the quadratic function involving the contractions e- is
coupled with the damage quantity Pc.

By using the properties (13), the first constitutive law in eqns (7) gives the stress-strain
relation

Let us note that if the material is undamaged (PI <= Pc = 1), relation (21) becomes the
classical linear elastic relation.

The equations of evolution obtained with the choices (19) and (20) are

div {PI(2pe+ + ).(tr [e]) +Iu) - Pe(2Jl8- +).(tr (e]) - Iu)} +f = 0, in n,
u'D-F, in an, (22)

inn,

k
oPI

=°aD ' in an,
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CcPc -k~Pc + B~ac +oL (Pc) 3-H2jl tr [e- .en + Wc+McC p;c). in n, (23)

k~c=O, inon, Pc(x,O)=Pco(x), inn,

where the vector (B~eac(x, t), B~eac(x, t» E oIdPt(x, t), Pc(x, t» is a normal vector to the
triangle C at the point (Pt, Pc) (see Fig. 1). We can check that these equations give only one
velocity (Pt, Pc) function of e and (Pt, Pc) such that Pt ~ 0 and Pc ~ 0 and (Pt> Pc) remains in
the triangle.

A loading history is shown in Fig. 2. One can see qualitatively the restoration of
stiffness after damaging in tension (this is the unilateral phenomenon). One can also see
that damage in compression is definitive. In other words, when the material is largely
damaged in compression, its stiffness cannot be restored when going from compression to
traction because it is crushed. This property is a consequence of the choice made for the
internal constraint (17) on the damage quantities Pt and Pc.

For the example of concrete, we choose the material characteristics from experimental
results (Mazars and Bazant, 1988). In Fig. 3, one can see this time quantitatively, the
restoration of stiffness when going from tension to compression. The characteristics of the
material used are: E"", 37 GPa, v = 0.2, Ct = 0.002 MPa· s, cc = 0.5 MPa· s, Wt = 1 X 10-4

MPa, Wc = 0.7 X lO- z MPa, M t = 0.25 X 10-3 MPa and M c = 0.3 X 10- 1 MPa.
We note the very different strengths in tension (about 2 x 103 kN m-Z

) and in com­
pression (about 30 x 103 kN m- Z

). They are in agreement with the usual values obtained
from experiments [see for example Mazars and Bazant (1988)].

5. EXAMPLES OF DAMAGE OF CONCRETE STRUCTURES

In this section we give examples based on the one-damage-quantity model described
in Section 3. The loadings are monotonic and do not change sign. Two examples of damage
of structures are investigated. The specimens are analysed as two-dimensional. Plane strain
is assumed.

5.1. First example
In concrete, most microcracks start from an uncracked surface and grow through the

depth of the specimen. Thus, damage mechanics, when applied to concrete, should be able
to predict the formation of damage in a specimen which is not notched or precracked.
They must also predict the influence of the imposed deformation and the damage growth
(Hillerborg, 1983).

For this purpose, two bending tests under imposed displacements on two identical
beams without notch are analysed. The first is a three-point bending test and the second
one a four-point bending test. The solicitations, the geometry and the mesh discretization
used for both the cakulations are shown in Fig. 4.

The mechanical characteristics are E = 27,000 MPa (Young's modulus) and v = 0.2
(Poisson's ratio). For the model we use W = 0.5 X 10-4 MPa, M= 0.25 x 10-3 MPa,
C = 0.001 MPa· s and the factor of influence of damage k = 0.2 MPa· mmz.

A methodology to determine the different parameters of the model from experiments
is as follows. From a tensile test performed at slow loading velocity to remain in a quasi­
static situation, the first damage threshold W (expressed in terms of volumetric energy) is
the strain energy of the material for which the stiffness begins to decrease. For example, if
this non-linearity begins at the strain eo, W = Ee~/2 (assuming the deformation to be
uniaxial). The viscosity parameter of damage C can be identified by performing experiments
at different leading velocities (small velocities to remain in a quasi-static situation). The
parameter M allows us to describe the softening branch (with small values) of the stress­
strain behaviour of the material (concrete for instance) and the non-softening behaviour
(with large values) [for instance, a ceramic-eeramic composite (Gasser and Nedjar (1991)].
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Fig. 2. (a) Loading history. (b) Constitutive law in tension-<:ompression.

With these three parameters, we get the uniaxial stress-strain behaviour of the material
(see for example the behaviour of the concrete plotted in Fig. 11).

The influence ofdamage factor .t resuhs from non-homogeneous loading tests, bending
tests for example. It controls the dimension of the damaged zones. Practical values of k
between 0.1 and 0.5 MPa· mm2 give good results in many circumstances (Fremond and
Nedjar, 1993a, b, 1994).

The force versus displacement curves of the two tests are superposed and plotted in
Fig. 5. It is important to note that these curves show no snap-back instability (Carpinteri
and Valente, 1988).
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computation.
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Fig. 5. Force versus displacement curves for the three- and four-point bending tests.

It is interesting to compare the formation and the growth of damage for the two tests
predicted by the model. For this purpose, Fig. 6 shows the juxtaposition of the damage
fields at three loading steps for ~h test. The first corresponds to the beginning of the
formation of the damage, the second to the ultimate load withstood by each beam (at the
peak; see Fig. 5) and the third to a post-peak situation just before the beams are completely
damaged through their depths.

5.2. Second example
This exampleintends to show the lack of mesh sensivity of the predictive theory. The

same physical problem is solved with different meshes to see whether or not the solutions
converge. The computations are carried out for the notched concrete plate shown in Fig. 7
with three meshes.

The material characteristics of the concrete used are E = 33 GPa and v = 0.2; for the
characteristics of the model we have W = 0.75 X 10-4 MPa, M = 0.2 X 10-3 MPa, c = 0.005
MPa's and k = 0.2 MPa' mm2

•

The three "opening force F versus the aperture a of the notch" curves corresponding
to the three meshes are plotted together with experimental results (Mazars and Walter,
1980) in Fig. 8. One can note the objectivity of these results. There is no mesh sensitivity
with regard to the global behaviour of the structure. One can observe the good prediction
of the actual ultimate load.

To illustrate the lack of mesh sensitivity of the damage process, Fig. 9 shows the
damage field predicted by the model fm the three meshes at the aperture of the notch
a = 0.22 mm (see Fig. 8).

5.3. Comments
These two examples illustrate the possibilities of the damage model issued from the

theory and its coherence from the mechanical point of view. They do not exhibit mesh
sensitivity and are able to predict the formation and growth of damage in concrete under
multiaxialloading.
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6. GRADIENT OF DAMAGE AND STRUCTURAL SIZE EFFECT

The important size effect in concrete has been the subject of many experimental
investigations in the laboratory and has been the subject of many theoretical studies [see
for instance Bazant and Ozbolt (1990), Hillerborg (1983) and Saouridis and Mazars (1988)].

One of the fundamental results of these studies is that it is observed that the nominal
stress (Bazant and Ozbolt, 1990; Mazars et al., 1991; Biolzi et al., 1994) decreases when
increasing the scale of the tested specimens. We can prove that this property is predicted
by the models based on the theory described in Section 2. We emphasize this result with
numerical examples compared to experiments.

The numerical examples we show correspond to three-point bending experiments on
notched beams with three size ratios: 1,2 and 4. They are related to experimental results
given in Bazant and Ozbolt (1990). Figure 10 shows half of the small specimen with the
mesh used for computation. The two other specimens and their meshes are similar with
ratios 2 and 4. The plane strain state is assumed for every computation.

The depth of the notch is always one-sixth of the depth of the beam. The depth of the
smallest beam is d = 7.62 X 10-2 m and its thickness is b = 3.81 X 10-2 m.

The characteristics of the material (concrete) are as in experiments: E = 35,000 MPa
and v = 0.18. The characteristics used for the model are c = 0.002 MPa· s, W = 0.42 X 10-4

MPa and M = 0.25 X 10-3 MPa. We choose the value of the factor of influence of damage
k = 0.1 MPa· rmn2• For concrete, such a value gives good results in many other cir­
cumstances (Fremond and Nedjar, 1993a,b, 1994).

With these characteristics, the tensile strength of the concrete, which does not depend
on k, is It = 3.27 MFa, as mown in Fig. 11. This concrete strength in tension agrees with
the experimental strength given in Bazant and Ozbolt (1990).

The numerical results are shown in Fig. 12. As for the examples of Section 5, the "forces
versus displacements" curves show no snap-back instability (Carpinteri and Valente, 1988).

The ultimate loads P are analysed for each test and the values of the nominal stresses
are given by the expression UN =: "6Ib~" as in Bazant and Ozbolt (1990) (with () = I for
the smal_ beam, /) :lIZ 2 for the mittdle beam and/) = 4 for the largest beam), where P6 is
the uttillMte lOad supported by the structure of si!e retioh (see Fig. 12). These nominal
stresses are 1Not1Id in Fig. 13, where ORe call see the computed and experimental nominal
strClS8C8 'versus the size. A good correlatKm with the experimental test data is observed: the
nominal stress decreases when the size of the beam increases.

7. A FATIGUE DAMAGE MODEL

Two kinds of damage processes are usually investigated: brittle damage and fatigue
damage. The models studied previously are brittle damage models. Fatigue damage is
mainly produced by an accumulation of damage during a high number of loading cycles
(Marigo, 1985; Lemaitre, 1992; Papa, 1993).Wepropose in this section a simple extension
of the damage theories studied in Section 3 to model the fatigue damage.

The basic idea is to consider that the threshold of damage decreases with the number
ofcycles N. The damage thresho~d Wis then such that W= W(N). In this case, the number
N is considered to be a global state quantity of the structure. The free energy '¥1 will also
depend on N, as well as the usual quantities:

'¥ 1 = '¥ I (e, p, grad P, N). (24)

By using continuum thermodynamics, the Clausius-Duhem inequality is satisfied if
the following condition is satisfied:

(25)

The constitutive relations (7) are still valid. The condition (25) is in agreement with
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Fig. 6. Damage field at displacements 0.2 mm (a), 0.3 mm (b) and 0.5 mm (c).
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mesh 1 mesh 2 mesh 3 .
Fig. 9. Damage fields for the three meshes. The aperture of the notch is 0.22 x 10- 3 m.
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p

Fig. 10. Three-point bending. Meshes of half of the small specimen.
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the property mentioned above, i.e. the threshold decreases with the number of applied
cycles. Such a condition is satisfied by the following general expression of the free energy :

k
'II I = ~P{2JJ tr [eel + ).(tr [eW} + W(N)(1- P) - M(log (IPI) - P+ 1) + "2 (grad P)2,

(26)

with

~W
-~o
~N '" .

The pseudo-potential of dissipation is the one given in eqn (12) and the constitutive
relations are those given by eqns (14).

The function W(N) has to be such that W(O) = Wo, the initial threshold, and
W(00) =0. A simple choice of this function can be given by

W(N) = Wo(l- ~) if N ~ NR ,

W(N) = O. (27)

NR can be interpreted as the number of cycles to achieve complete damage. We note that if
NR tends to + 00, we get the brittle damage model described in section 3.

A qualitative example of fatigue damage behaviour using the threshold function (27)
is plotted in Fig. 14. The value of the quantity NR chosen is NR = 20. This behaviour is the
response to the loading history given in Fig. 15, where strain controlled loading is assumed.

8. CONCLUSION

A new formulation of damage based on the principle of virtual power is developed. It
introduces the gradient of damage, which physically accounts for the influence of damage
at a material point on the damage of its neighbourhood. It appears that this formulation is
coherent from the mechanical, mathematical and numerical points of view.

SAS 33-8-C
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Fig. 15. Loading history. Strain controlled loading.

It is shown that the resulting theories do not exhibit mesh sensitivity. They are able to
predict correctly the concrete behaviour in multiaxialloading situations with a good pre­
diction of the very important structural size effect.

The unilateral phenomenon is described by using two damage quantities such that
damage in compression produces damage in tension, and the reverse is not true. Finally,
an extension to predict the fatigue damage behaviour is proposed.
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